

EASTERN REGIONAL RESEARCH CENTER AGRICULTURAL RESEARCH SERVICE UNITED STATES DEPARTMENT OF AGRICULTURE 600 E. MERMAID LANE WYNDMOOR, PA 19038 (215) 233-6400

Title: Cyclospora cayetanensis: Research Methodology and Control by Irradiation

Author(s): B.A. Niemira, and D.W. Thayer

Citation: In "Use of Irradiation to Ensure Hygienic Quality of Fresh, Pre-Cut and

Vegetables and Other Minimally Processed Food of Plant Origin" Report of First FAO/IAEA Meeting 5-9, November 2001, Rio De Janeiro, 7 pp. (2001) 1-7

Number: 7439

Please Note:

This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

Our on-line publications are scanned and captured using Adobe Acrobat. During the capture process some errors may occur. Please contact William Damert, wdamert@arserrc.gov if you notice any errors in this publication.

Cyclospora cayetanensis:

Research methodology and control by irradiation

Brendan A. Niemira and Donald W. Thayer

Food Safety Intervention Technologies Research Unit U.S. Dept. Agriculture, Agricultural Research Service Eastern Regional Research Center Wyndmoor, Pennsylvania

² Cyclopsora cayetanensis:

introduction and epidemiology

- Coccidian parasite; spherical oocysts ~9 nm in diameter
- Reports of recovery of *C. cayetanensis* from Old World primates, but humans may be the only true hosts
- Disease progression:
 - ingestion of a sporulated oocyst containing 4 sporozites
 - sporozoites penetrate epithelial lining of intestine
 - increasing damage to host cells concurrent with parasite's asexual division, mobility and sexual reproduction
 - new oocysts sloughed into feces, along with damaged epithelium

3

4 ☐ C. cayetanensis:

introduction and epidemiology

- Clinical symptoms
 - signs start 1-7 days post-ingestion of oocysts
 - mild infections may produce little or no outward signs
 - more extensive infections may show prolonged watery diarrhea, abdominal cramping, weight loss, anorexia, vomiting and/or fever
- Extensive treatment with sulfa-type drugs can be effective

5 🗀 C. cayetanensis:

introduction and epidemiology

- · Infection historically associated with poor sanitation
 - pediatric gastroenteritis in developing nations

- adult infection in travelers from industrialized nations visiting loci of infection
- 1996: 1465 cases in USA, Canada associated with Guatemalan raspberries (Herwaldt and Ackers, N Engl J Med 1997 May 29;336(22):1548-56)
- April-June 1997: 1012 cases in USA, Canada, Guatemalan raspberries again implicated (Herwaldt and Beach, Ann Intern Med 1999 Feb 2;130(3):210-20)
- May 1997: Guatemala voluntarily suspends export of fresh raspberries, outbreak ends

6 🗓 C. cayetanensis:

introduction and epidemiology

- Outbreaks in North America occur more frequently in spring, early summer
- · Relation to time of peak importation of fresh fruits and vegetables suggested
- Long distance transport of commodities, multiple handling stations increase possibility of contamination between farm and table
- Washing foods before consumption is a key step, but it does not remove 100% of oocysts (Ortega, Y.R. et al. 1997 Am. J. Trop. Med. Hyg. 57: 683-686)

7 🗀 C. cayetanensis: detection methodology

- US-FDA BAM: Concentration and Preparation of Cyclospora from Berries for the Polymerase Chain Reaction (PCR) and Microscopy (vm.cfsan.fda.gov/~ebam/bam-19a.html)
- Epi-illuminated Fluorescence Microscope; UV 1A filter block (Excitation Filter, EX 365/10; Dichroic mirror, DM 400; Barrier Filter, BA-400; or equivalent)
- PCR: buffers, reagents, thermocycler, gels, film (protocols should be validated for each material/isolate)

8

- Wash method for fresh produce (berries, lettuce, etc.) or puree
- Stomacher bag, 250 ml of deionized water
- 250-500 g of produce
 - berries +/- 1 berry; USE ONLY INTACT BERRIES
 - juice from cut or broken berries may be inhibitory to PCR
 - debris may interfere with microscopy
- 250 g of puree (juice and debris are unavoidable)

9 🗀

- Invert and agitate gently. Avoid damaging produce. Centrifuge 1500 X g for 10 minutes
- Decant supernatant, retaining 1 ml of supernatant and to resuspend pellet fraction.
- Appropriate aliquots of resuspended pellet will be removed from this tube for microscopy and PCR.
- Store the remaining portion at 4°C for up to one month. After one month, dilute the remaining material with an equal volume of 2.5% potassium dichromate, mix, and store at 4°C.

10

- Prepare wet mount of 10 µl sediment.
- View under UV light at 400 X. Cyclospora oocysts fluoresce cobalt blue with UV-1A filter, blue-green with broader UV illumination.
- Confirm cyst size of 8-10 µm with microscope reticle, compare presumptive oocysts to those in a known standard.
- Switch from epi-fluorescence microscopy to bright field or DIC to confirm internal structures
- Seal slides, document positive samples with photographs taken at multiple planes.

11

- 100 μ l of produce sediment. Thaw, microcentrifuge. 14,000 RPM (15,800 X g) for 3 min and discard supernatant.
- Wash pellet once with 100 μl TE buffer, centrifuge at 14,000 RPM for 3 min.
 Discard supernatant and resuspend in 100 μl TE
- Complete 3 freeze/thaw cycles, each 2 min in liquid nitrogen or a dry ice-ethanol bath followed by 2 min in a 98°C water bath. Add 0.1 ± 0.02 g glass beads to extract.

12

- Vortex for 5 min, chill on ice for 5 min.
- Centrifuge sample extract at 14,000 RPM (15,800 X g) for 3 min. Transfer supernatant to new sterile microcentrifuge tube.
- This extract can be stored frozen (-20°C) until ready for the PCR analysis, or if needed as reserve in case of template inhibition problems.
- Combine 20 μl sample extract and 2 μl freshly prepared Non-fat Milk Solution in 1 ml sterile deionized water. The entire 22 μl will be used as template in a 100 μl PCR amplification.

13 ___

• PCR primers: CYCF1E, CYCR2B, CYCF3E and CYCR4B (Relman et. al., J. Infect. Dis.173:440-445, 1996)

14

- Two sequential PCR runs
- #1 uses CYCF1E and CYCR2B primers, probing the template DNA extracted from the sample
- #2 uses CYCF3E and CYCR4B primers, probing the template DNA from Step #1
- Agarose/ethidium bromide gel electrophoresis, UV transillumination. Predicted size of DNA marker after F1E/R2B, is 651 bp; after F3E/R4B is 308 bp.
- ★Amplified product after the first round may not be visible; only product from the second round of PCR should be electrophoresed.

15

 PCR product of 308 bp after the second PCR round a presumptive positive for Cyclospora or Eimeria.

- Digestion of the amplification product with MnlI distinguishes Cyclospora from Eimeria
- Prepare separate restriction digests
 - each presumptive positive PCR amplification product
 - amplification products from control Cyclospora cayetanensis and Eimeria tenella strains.
- Agarose/ethidium bromide

gel electrophoresis

- 16
- Microscopy is a fundamental tool for detection
- PCR will reliably indicate the presence of *C. cayetanensis*, and can discriminate between Cyclospora and Eimeria
- For both methods, comparison with known standards is essential
- ★PCR will amplify DNA from dead cells not a diagnostic tool to evaluate postirradiation survival or infectivity. Only indicates presence/absence.

17 🗀 C. cayetanensis: ionizing radiation

- Multiple studies have been completed on *C. cayetanensis* (Dubey, Thayer, Speer, and Shen, 1998)
- Typically trials were conducted with 50,000 sporulated or 50,000 unsporulated oocysts
- Excystation occurred at doses through 0.5 kGy
- Sporulation occurred at doses up to 1.0 kGy though there was a dose dependent delay, morphological changes, and reduction in sporulation

18 🗓 C. cayetanensis: treatment validation

- · No animal model exists; difficult to validate inactivation
- Molecular techniques may provide some additional tools, but validation of inactivation treatments requires human experimentation
- Severity of symptoms, frequency of mortality hinders efforts to recruit volunteers
- A good model pathogen would provide results that would reliably predict the behavior of irradiated *C. cayetanensis*

19 i Toxoplasma gondii oocyst as model for coccidian parasite irradiation

- Low host specificity, infects many mammals, including human. Good animal model (mouse) readily available.
- Infection generally asymptomatic in adults; low risk of hepatitis, blindness, spontaneous abortion
- · Transmitted by fecal, oral and meat
- Very efficient bioassay 1 oocyst can be fatal in test subject.
- · Mortality in mice correlated with dose exposure

20 T. gondii: methodology

- Dubey, Jenkins, Thayer 1996. J. Parasitol. 82:724-727
- Oocysts obtained by sugar flotation of feces from cats fed tissues cysts of VEG strain.
- Oocysts sporulated in 2% H₂SO₄ at room temperature, 7 days. Stored in H₂SO₄ at 4C until use.
- $\sim 10^6$ sporulated oocysts neutralized in 3% NaOH, centrifuged, resuspended in 1 ml 0.9% NaCl
- · Gamma irradiation was performed at room temperature
- · Treated oocysts were inoculated orally into mice

21 🗇 T. gondii: methodology

- · Mice that died after inoculation were examined for tissue cysts
- Surviving mice were bled periodically to isolate antibodies to T. gondii
- All mice were sacrificed after 2 months. A portion of the mouse tissue was fed to 2 *T. gondii*-free cats.
- The cats were bled to isolate antibodies, and sacrificed after 25 days to identify tissue cysts

22 🗓 T. gondii radiation biology

- Most mice fed non-irradiated oocysts or oocysts irradiated to 0.1 kGy or less died of acute toxoplasmosis
- At doses 0.2 and above, no tissue cysts were found.
- Antibodies to T. gondii were found in 11 of 40 mice fed oocysts irradiated to 0.2-0.5 kGy
- Cats fed tissue from seropositive mice did not shed *T. gondii* oocysts in feces, did not develop antibodies to *T. gondii* and did not develop tissue cysts

23 \Box T. gondii: strain radiation sensitivity

- Dubey and Thayer, J. Parasitol. 80:764-767 (1994)
- Mice were inoculated with 95 new strains of T. gondii, isolated from pigs. Also inoculated with 10 existing laboratory strains
- Brain tissue vacuum packed, irradiated to 0.0 (control), 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, and 0.9 kGy
- Treated samples were bioassayed in mice, cats or both
- Tissue cysts of <u>all strains</u> were rendered nonviable at 0.4 kGy
- 0.25 kGy had identical efficacy when delivered at -4, 0, 4, 8, 12 or 16C. No effect of irradiation temperature.

24 T. gondii: oocysts irradiated before sporulation

- Unsporulated oocysts irradiated
 - Exp't 1: 0.0 (control), 0.2, 0.4, 0.6 and 0.8 kGy
 - Exp't 2: 0.0 (control), 3.5 and 4.0 kGy
- Incubated in 2% $\rm H_2SO_4$ at room temperature for 30 (#1) or 12 (#2) days to allow sporulation
- Microscopy to confirm germination, fed to mice

- · Development of cysts evaluated by bioassay
- 25 T. gondii: oocysts irradiated before sporulation
 - * Antibodies to *T. gondii* not found in these mice. No evidence of disease demonstrated by bioassay
 - (Dubey et al. 1998 Int. J Parasitology 28:369-375)

26 T. gondii: effect of sporulation stage

- Oocysts were irradiated <u>before</u> sporulation (2 sporocysts formed) and then bioassayed in mice.
- ** No. of mice T. gondii positive of no. of mice inoculated.

27

- Oocysts sporulated before irradiation
- Raspberries either sprayed via atomiser (10⁶ oocysts) or injected with suspension (10⁴ oocysts)
- Both sets irradiated to 0.4 kGy
- \bullet Berries homogenized in saline, pelletized. Sediment filtered (200 and 90 μm screen) and repelletized.
- Sediment fed to mice. Bled for antibody isolation and sacrificial bioassay.
- 28 __ T. gondii: oocysts irradiated on raspberries

29 T. gondii: conclusions

- T. gondii sporulates after doses up to 1.0 kGy, but is nonviable and unable to cause disease after doses of 0.4 kGy
- T. gondii oocysts irradiated at ≥ 0.4 kGy can excyst but do not multiply in the host
- Sporotozoites from irradiated oocysts can induce antibody formation in the host, even in the absence of histopathological signs
- In vitro measurement of sporulation alone insufficient to properly evaluate efficacy of irradiation

30 ☐ T. gondii: conclusions

- Biology and radiation sensitivity make T. gondii a good model for C. cayetanensis
- Requirement for animal model to validate efficacy of irradiation, as *in vitro* observations do not reliably indicate ability to cause disease
- Elimination/inactivation of T. gondii at relatively low doses, ~0.4 kGy
- This dose level is tolerable and beneficial for many fruits and vegetables, including raspberries
- US-FDA regulations: max. of 1.0 kGy for disinfestation, delay of maturation of produce. Proposal to increase limit is under review.

31 ☐ Research questions

• Effect of different fruit and/or vegetable substrates on radiation sensitivity of *C. cayetanensis* or *T. gondii*

- Effect of isolate and/or strain variation, in combination with changes in substrate, processing conditions (temperature, MAP, etc.)
- Radiation processing of other coccidians (e.g. Cryptosporidium)
- Further validation and acceptance of *T. gondii* as a model for *C. cayetanensis* by regulatory bodies, and interaction of different regulatory agencies in exporting/importing countries

32 Electronic reference resources

- US-FDA: Concentration and Preparation of Cyclospora from Berries for the Polymerase Chain Reaction (pcr) and Microscopy
- US-CDC: C. cayetanensis FAQ, epidemiology links (www.cdc.gov/ncidod/dpd/parasites/cyclospora/factsht_cyclospora.htm)
- Kansas State University Parasitology Laboratory (www.ksu.edu/parasitology/cyclospora/cyclospora.html)
- USDA: Food Irradiation (overview, including discussion of *C. cayetanensis*) (www.ars.usda.gov/is/pr/1997/971210.htm)